Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(4): 103524, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377688

RESUMO

The objective of this study was to investigate the effects of sex on meat quality and the composition of amino and fatty acids in the breast muscles of White King pigeon squabs. Untargeted metabolomics was also conducted to distinguish the metabolic composition of plasma in different sexes. Compared with male squabs, female squabs had greater intramuscular fat (IMF) deposition and lower myofiber diameter and hydroxyproline content, leading to a lower shear force. Female squabs also had higher monounsaturated fatty acid and lower n-6 and n-3 polyunsaturated fatty acid proportions in the breast muscle, and had greater lipogenesis capacity via upregulation of PPARγ, FAS and LPL gene expression. Moreover, female squabs had lower inosine 5'-monophosphate, essential, free and sweet-tasting amino acid contents. Furthermore, Spearman's correlations between the differential plasma metabolites and key meat parameters were assessed, and putrescine, N-acetylglutamic acid, phophatidylcholine (18:0/P-16:0) and trimethylamine N-oxide were found to contribute to meat quality. In summary, the breast meat of male squabs may have better nutritional value than that of females, but it may inferior in terms of sensory properties, which can be attributed to the lower IMF content and higher shear force value. Our findings enhance our understanding of sex variation in squab meat quality, providing a basis for future research on pigeon breeding.


Assuntos
Aminoácidos , Ácidos Graxos , Feminino , Masculino , Animais , Ácidos Graxos/análise , Aminoácidos/metabolismo , Músculo Esquelético/química , Galinhas/metabolismo , Carne/análise , Metaboloma
2.
Poult Sci ; 103(4): 103544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402849

RESUMO

The photoperiod is an important factor during rearing and laying period that affects age and body weight at sexual maturation and reproductive performance in poultry; however relevant research on this factor in pigeons is still lacking. Thus, this study investigated the effects of different photoperiodic programs on the reproductive performance and hormonal profile in White King pigeons. From 101 d of age, the pigeons in the control group were exposed to a natural photoperiod until 160 d, and then to a photoperiod of 16 h (16 light [L]: 8 dark [D]) and lasted for 200 d. Pigeons in the 3 experimental groups were exposed to a short photoperiod of 8L: 16D until 160 d, and then to 14L: 10D, 16L: 8D, and 18L: 6D, respectively. The results showed that light-restriction (8L: 16D) during the rearing period and then 14L: 10D or 16L: 8D photostimulation delayed the age at first egg laying in pigeons. However, 16L: 8D after an 8L: 16D photoperiod during the breeding period ensured maximum photosensitivity, and significantly improved the reproductive performance (egg production and fertility rates) in pigeons. Moreover, the highest reproductive performance in group under16L: 8D after 8L: 16D photoperiodic program was accompanied by improved follicle-stimulating hormone and estradiol levels and reduced prolactin hormone levels. The results indicated that photoperiodic programs from rearing to laying period are closely related to the reproductive performance of White King pigeons. The results provide information that 8L: 16D during rearing period and 16L: 8D during laying period can be used to enhance reproductive performance in the pigeon industry.


Assuntos
Columbidae , Fotoperíodo , Animais , Galinhas/fisiologia , Reprodução/fisiologia , Hormônios , Luz
3.
Biochem Biophys Rep ; 37: 101597, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38371526

RESUMO

Gastric cancer (GACA) is a complex and multifaceted disease influenced by a variety of environmental and genetic factors. Somatic mutations play a major role in its development, and their characteristics, including the asymmetry between two DNA strands, are of great interest and appear as a signal of information and guidance, revealing mechanisms of DNA damage and repair. Here, we analyzed the impact of High-frequency mutated genes on patient prognosis and found that the effect of expression levels of tumor protein p53 (TP53) and lysine methyltransferase 2C (KMT2C) genes remained high throughout the development of GACA, with similar expression patterns. After investigating mutation asymmetry across mutagenic processes, we found that transcriptional asymmetry was dominated by T > G mutations under the influence of transcription couples repair and damage. The apolipoprotein B mRNA editing enzyme catalytic polypeptide like (APOBEC) enzyme that induces mutations during DNA replication has been identified here and we identified a replicative asymmetry, which was dominated by C > A mutations in left-replicating. Strand bias in different mutation classes at transcription factor binding sites and enhancer regions were also confirmed, which implies the important role of non-coding regulatory elements in the occurrence of mutations. This work systematically describes mutational strand asymmetries in specific genomic regions, shedding light on the DNA damage and repair mechanisms underlying somatic mutations in cohorts of GACA patients with gastric cancer.

4.
FASEB J ; 38(1): e23332, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095232

RESUMO

Severe hypoxia induced by vascular compromise (ovarian torsion, surgery), obliteration of vessels (aging, chemotherapy, particularly platinum drugs) can cause massive follicle atresia. On the other hand, hypoxia increases the occurrence of DNA double-strand breaks (DSBs) and triggers cellular damage repair mechanisms; however, if the damage is not promptly repaired, it can also induce the apoptosis program. Insulin-like growth factor-I (IGF-I) is a polypeptide hormone that plays essential roles in stimulating mammalian follicular development. Here, we report a novel role for IGF-I in protecting hypoxic GCs from apoptosis by promoting DNA repair through the homologous recombination (HR) process. Indeed, the hypoxic environment within follicles significantly inhibited the efficiency of HR-directed DNA repair. The presence of IGF-I-induced HR pathway to alleviate hypoxia-induced DNA damage and apoptosis primarily through upregulating the expression of the RAD51 recombinase. Importantly, we identified a new transcriptional regulator of RAD51, namely E2F8, which mediates the protective effects of IGF-I on hypoxic GCs by facilitating the transcriptional activation of RAD51. Furthermore, we demonstrated that the PI3K/AKT pathway is crucial for IGF-I-induced E2F8 expression, resulting in increased RAD51 expression and enhanced HR activity, which mitigates hypoxia-induced DNA damage and thereby protects against GCs apoptosis. Together, these findings define a novel mechanism of IGF-I-mediated GCs protection by activating the HR repair through the PI3K/AKT/E2F8/RAD51 pathway under hypoxia.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Reparo de DNA por Recombinação , Feminino , Animais , Suínos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Insulin-Like I/genética , Reparo do DNA , Recombinação Homóloga , Rad51 Recombinase/genética , Hipóxia , Células da Granulosa/metabolismo , Apoptose , Mamíferos/metabolismo
5.
Front Cell Dev Biol ; 10: 956334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837331

RESUMO

The rapid development of medical technology and widespread application of immunosuppressive drugs have improved the success rate of organ transplantation significantly. However, the use of immunosuppressive agents increases the frequency of malignancy greatly. With the prospect of "precision medicine" for tumors and development of next-generation sequencing technology, more attention has been paid to the application of high-throughput sequencing technology in clinical oncology research, which is mainly applied to the early diagnosis of tumors and analysis of tumor-related genes. All generations of cancers carry somatic mutations, meanwhile, significant differences were observed in mutational signatures across tumors. Systematic sequencing of cancer genomes from patients after organ transplantation can reveal DNA damage and repair processes in exposed cancer cells and their precursors. In this review, we summarize the application of high-throughput sequencing and organoids in the field of organ transplantation, the mutational patterns of cancer genomes, and propose a new research strategy for understanding the mechanism of cancer following organ transplantation.

6.
Metabolites ; 12(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35629871

RESUMO

The selection for improved body weight is an effective approach in animal breeding. Guangxi Partridge chickens have differentiated into two lines under selective breeding, which include line S and line D that have shown statistically significant differences in body weight. However, the meat quality analysis in our study indicated that the quality of breast and thigh muscles in line S chickens changed, which included increased values of L*, b*, and drip loss and decreased a* value, pH, and shear force in skeletal muscles. To illuminate the effect of selection on skeletal muscles, LC-MS/MS metabolomics was performed to explore differentiated metabolites in divergent tissues from the two chicken lines. The results of principal component analysis and orthogonal projection to latent structures discriminant analysis suggested that metabolites of different groups were separated, which suggested that selective breeding certainly affected metabolism of skeletal muscles. KEGG analysis identified that valine, leucine, and isoleucine biosynthesis, glycerophospholipid metabolism, and glutathione metabolism noteworthily changed in breast muscle. Amino sugars and nucleotide sugar metabolism, ascorbate and aldarate metabolism, the pentose phosphate pathway, pentose and glucuronate interconversions, fructose and mannose metabolism, and glycerophospholipid metabolism were remarkedly identified in thigh muscle. These screened pathways suggested oxidative stress in breast and thigh muscles, which corresponded with our previous results. Therefore, this study determined that glycerophospholipid metabolism conservatively functioned in muscle flavor and development but exhibited different anti-oxidative patterns in different skeletal muscles. Overall, the present study identified several differentiated metabolites and pathways for exploring differences in meat quality between different broiler populations.

7.
Genes (Basel) ; 13(5)2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35627183

RESUMO

The Guangxi Partridge chicken is a well-known chicken breed in southern China with good meat quality, which has been bred as a meat breed to satisfy the increased demand of consumers. Compared with line D whose body weight is maintained at the average of the unselected group, the growth rate and weight of the selected chicken group (line S) increased significantly after breeding for four generations. Herein, transcriptome analysis was performed to identify pivotal genes and signal pathways of selective breeding that contributed to potential mechanisms of growth and development under artificial selection pressure. The average body weight of line S chickens was 1.724 kg at 90 d of age, which showed a significant increase at 90 d of age than line D chickens (1.509 kg), although only the internal organ ratios of lung and kidney changed after standardizing by body weight. The myofiber area and myofiber density of thigh muscles were affected by selection to a greater extent than that of breast muscle. We identified 51, 210, 31, 388, and 100 differentially expressed genes (DEGs) in the hypothalamus, pituitary, breast muscle, thigh muscle, and liver between the two lines, respectively. Several key genes were identified in the hypothalamus-pituitary-muscle axis, such as FST, THSB, PTPRJ, CD36, PITX1, PITX2, AMPD1, PRKAB1, PRKAB2, and related genes for muscle development, which were attached to the cytokine-cytokine receptor interaction signaling pathway, the PPAR signaling pathway, and lipid metabolism. However, signaling molecular pathways and the cell community showed that elevated activity in the liver of line S fowl was mainly involved in focal adhesion, ECM-receptor interaction, cell adhesion molecules, and signal transduction. Collectively, muscle development, lipid metabolism, and several signaling pathways played crucial roles in the improving growth performance of Guangxi Partridge chickens under artificial selection for growth rate. These results support further study of the adaptation of birds under selective pressure.


Assuntos
Galinhas , Perfilação da Expressão Gênica , Animais , Peso Corporal , Galinhas/metabolismo , China , Carne/análise , Músculos Peitorais/metabolismo
8.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36613849

RESUMO

The influence of monochromatic green light stimulation on hatching performance and embryo development has been studied in chickens, but not geese. The liver has crucial functions in the regulation of energy metabolism during embryogenesis, but its involvement in green light transduction is still unidentified. We aimed to determine the influence of monochromatic green light on Yangzhou goose hatching performance and embryo development. We also investigated the metabolomics and transcriptomic responses of the embryonic liver to green light to determine the underlying molecular mechanisms. Eggs were incubated under either 12 h of monochromatic green light/dark (12 L:12D) cycles or 24 h of darkness (0G:24D). Green light promoted embryonic development and hatching performance, also affected the expression of myogenic regulatory factors associated with muscle development. It also shortened hatching time and elevated plasma levels of growth hormone and insulin-like growth factor-1. Metabolomics and transcriptomic results revealed differentially expressed genes and metabolites with enhanced gluconeogenesis/glycolysis and increased plasma glucose and pyruvate levels under green light. Hence, the growth-promoting effect possibly through regulating energy metabolism in the liver and myogenic regulatory factors in muscle. Our findings provide important and novel insights into the mechanisms underlying the beneficial effects of green light on goose embryos.


Assuntos
Desenvolvimento Embrionário , Gansos , Glucose , Fígado , Animais , Desenvolvimento Embrionário/efeitos da radiação , Fígado/metabolismo , Fatores de Regulação Miogênica
9.
Front Genet ; 13: 1071562, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685899

RESUMO

The objective of this study was to investigate the effects of rearing systems on the bone quality parameters in chickens using a metabolomics strategy. A total of 419 male one-day-old chicks were randomly allocated to two groups, a floor rearing group (FRG, n = 173) and a cage rearing group (CRG, n = 246). At 6, 8, 10, and 12 weeks of age, all chickens were radiographed by a digital X-ray machine, and body weight was recorded. At 12 weeks of age, 12 birds were selected from each group to obtain tibia and femur, and bone quality parameters of bone mineral density (BMD), mineral content (BMC), breaking strength (BBS), stiffness, Young's modulus (YM), ash content, calcium content, and phosphorus content were determined. An untargeted metabolomics assay was performed to identify changes in the serum metabolic profile (n = 8 birds/group). The results showed that cage-reared chickens had wider tibiae and greater body weight compared with floor-reared chickens. There were no significant differences in BMC or BBS between the two groups (p > 0.05), but BMD, ash content, calcium content, and phosphorus content of the tibia and femur of FRG were significantly higher than those of CRG (p < 0.05). Greater stiffness and YM of the femur were also observed in birds raised in the FRG compared with those raised in the CRG (p < 0.05). Taken together, the results suggest that rearing systems affected bone quality parameters. Furthermore, 148 and 149 differential metabolites were identified in positive and negative ion modes by LC-MS/MS analysis, among which 257 metabolites were significantly correlated with 16 bone quality parameters, including leucine, myristoleic acid, glycocholic acid, and N-phenylacetamide. KEGG analysis indicated that 15 metabolic pathways, including six pathways of amino acid metabolism, two pathways of lipid metabolism, and two pathways of carbohydrate metabolism, were responsible for bone quality. Overall, the present study demonstrated the effect of rearing systems on bone quality parameters, and identified several metabolites and metabolic pathways associated with bone quality parameters.

10.
Proc Natl Acad Sci U S A ; 117(39): 24359-24368, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32938798

RESUMO

The mechanisms underlying sex determination are astonishingly plastic. Particularly the triggers for the molecular machinery, which recalls either the male or female developmental program, are highly variable and have evolved independently and repeatedly. Fish show a huge variety of sex determination systems, including both genetic and environmental triggers. The advent of sex chromosomes is assumed to stabilize genetic sex determination. However, because sex chromosomes are notoriously cluttered with repetitive DNA and pseudogenes, the study of their evolution is hampered. Here we reconstruct the birth of a Y chromosome present in the Atlantic herring. The region is tiny (230 kb) and contains only three intact genes. The candidate male-determining gene BMPR1BBY encodes a truncated form of a BMP1B receptor, which originated by gene duplication and translocation and underwent rapid protein evolution. BMPR1BBY phosphorylates SMADs in the absence of ligand and thus has the potential to induce testis formation. The Y region also contains two genes encoding subunits of the sperm-specific Ca2+ channel CatSper required for male fertility. The herring Y chromosome conforms with a characteristic feature of many sex chromosomes, namely, suppressed recombination between a sex-determining factor and genes that are beneficial for the given sex. However, the herring Y differs from other sex chromosomes in that suppression of recombination is restricted to an ∼500-kb region harboring the male-specific and sex-associated regions. As a consequence, any degeneration on the herring Y chromosome is restricted to those genes located in the small region affected by suppressed recombination.


Assuntos
Peixes/genética , Cromossomos Sexuais/genética , Animais , Evolução Molecular , Feminino , Proteínas de Peixes/genética , Peixes/fisiologia , Duplicação Gênica , Masculino , Reprodução
11.
Genome Biol Evol ; 12(10): 1918-1928, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32835359

RESUMO

Domestication has resulted in immense phenotypic changes in animals despite their relatively short evolutionary history. The European rabbit is one of the most recently domesticated animals, but exhibits distinct morphological, physiological, and behavioral differences from their wild conspecifics. A previous study revealed that sequence variants with striking allele frequency differences between wild and domestic rabbits were enriched in conserved noncoding regions, in the vicinity of genes involved in nervous system development. This suggests that a large proportion of the genetic changes targeted by selection during domestication might affect gene regulation. Here, we generated RNA-sequencing data for four brain regions (amygdala, hypothalamus, hippocampus, and parietal/temporal cortex) sampled at birth and revealed hundreds of differentially expressed genes (DEGs) between wild and domestic rabbits. DEGs in amygdala were significantly enriched for genes associated with dopaminergic function and all 12 DEGs in this category showed higher expression in domestic rabbits. DEGs in hippocampus were enriched for genes associated with ciliary function, all 21 genes in this category showed lower expression in domestic rabbits. These results indicate an important role of dopamine signaling and ciliary function in the evolution of tameness during rabbit domestication. Our study shows that gene expression in specific pathways has been profoundly altered during domestication, but that the majority of genes showing differential expression in this study have not been the direct targets of selection.


Assuntos
Evolução Biológica , Encéfalo/metabolismo , Domesticação , Dopamina/metabolismo , Coelhos/genética , Animais , Animais Recém-Nascidos , Cílios/genética , Mapas de Interação de Proteínas , Coelhos/metabolismo , Seleção Genética , Transcriptoma
12.
Commun Biol ; 3(1): 472, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859973

RESUMO

In depth studies of quantitative trait loci (QTL) can provide insights to the genetic architectures of complex traits. A major effect QTL at the distal end of chicken chromosome 1 has been associated with growth traits in multiple populations. This locus was fine-mapped in a fifteen-generation chicken advanced intercross population including 1119 birds and explored in further detail using 222 sequenced genomes from 10 high/low body weight chicken stocks. We detected this QTL that, in total, contributed 14.4% of the genetic variance for growth. Further, nine mosaic precise intervals (Kb level) which contain ancestral regulatory variants were fine-mapped and we chose one of them to demonstrate the key regulatory role in the duodenum. This is the first study to break down the detail genetic architectures for the well-known QTL in chicken and provides a good example of the fine-mapping of various of quantitative traits in any species.


Assuntos
Galinhas/crescimento & desenvolvimento , Galinhas/genética , Haplótipos , Mutação , Locos de Características Quantitativas , Característica Quantitativa Herdável , Animais , Cruzamentos Genéticos , Regulação da Expressão Gênica , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Especificidade de Órgãos/genética , Fenótipo , Polimorfismo de Nucleotídeo Único
13.
Front Genet ; 10: 716, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475031

RESUMO

Chickens are bred all over the world and have significant economic value as one of the major agricultural animals. The growth rate of commercial broiler chickens is several times higher than its Red Jungle fowl (RJF) ancestor. To further improve the meat production of commercial chickens, it is quite important to decipher the genetic mechanism of chicken growth traits. In this study, we found that broiler chickens exhibited lower levels of E3 ubiquitin ligase muscle atrophy F-box (MAFbx or Atrogin-1) relative to its RJF ancestor. As a ubiquitin ligase, Atrogin-1 plays a crucial role in muscle development in which its up-regulation often indicates the activation of muscle atrophic pathways. Here, we showed that the Atrogin-1 expression variance partly affects chicken muscle growth rates among different breeds. Furthermore, we demonstrated that the reduced expression of Atrogin-1 in broiler chickens was ascribed to a single nucleotide polymorphism (SNP), which inhibited the binding of transcription regulators and attenuated the enhancer activity. The decreased Atrogin-1 in broiler chickens suppresses the catabolism of muscle protein and preserves muscle mass. Our study facilitates the understanding of the molecular mechanism of chicken muscle development and has a high translational impact in chicken breeding.

14.
Mol Ecol ; 27(6): 1457-1478, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29359877

RESUMO

Speciation is a process proceeding from weak to complete reproductive isolation. In this continuum, naturally hybridizing taxa provide a promising avenue for revealing the genetic changes associated with the incipient stages of speciation. To identify such changes between two subspecies of rabbits that display partial reproductive isolation, we studied patterns of allele frequency change across their hybrid zone using whole-genome sequencing. To connect levels and patterns of genetic differentiation with phenotypic manifestations of subfertility in hybrid rabbits, we further investigated patterns of gene expression in testis. Geographic cline analysis revealed 253 regions characterized by steep changes in allele frequency across their natural region of contact. This catalog of regions is likely to be enriched for loci implicated in reproductive barriers and yielded several insights into the evolution of hybrid dysfunction in rabbits: (i) incomplete reproductive isolation is likely governed by the effects of many loci, (ii) protein-protein interaction analysis suggest that genes within these loci interact more than expected by chance, (iii) regulatory variation is likely the primary driver of incompatibilities, and (iv) large chromosomal rearrangements appear not to be a major mechanism underlying incompatibilities or promoting isolation in the face of gene flow. We detected extensive misregulation of gene expression in testis of hybrid males, but not a statistical overrepresentation of differentially expressed genes in candidate regions. Our results also did not support an X chromosome-wide disruption of expression as observed in mice and cats, suggesting variation in the mechanistic basis of hybrid male reduced fertility among mammals.


Assuntos
Aberrações Cromossômicas , Regulação da Expressão Gênica/genética , Especiação Genética , Isolamento Reprodutivo , Animais , Frequência do Gene , Masculino , Modelos Genéticos , Locos de Características Quantitativas/genética , Coelhos , Testículo/metabolismo , Sequenciamento Completo do Genoma
15.
Elife ; 62017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28665273

RESUMO

The Atlantic herring is one of the most abundant vertebrates on earth but its nucleotide diversity is moderate (π = 0.3%), only three-fold higher than in human. Here, we present a pedigree-based estimation of the mutation rate in this species. Based on whole-genome sequencing of four parents and 12 offspring, the estimated mutation rate is 2.0 × 10-9 per base per generation. We observed a high degree of parental mosaicism indicating that a large fraction of these de novo mutations occurred during early germ cell development. The estimated mutation rate - the lowest among vertebrates analyzed to date - partially explains the discrepancy between the rather low nucleotide diversity in herring and its huge census population size. But a species like the herring will never reach its expected nucleotide diversity because of fluctuations in population size over the millions of years it takes to build up high nucleotide diversity.


Assuntos
Peixes/genética , Taxa de Mutação , Nucleotídeos/genética , Animais , Sequenciamento Completo do Genoma
16.
Genetics ; 205(2): 955-965, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27986804

RESUMO

The dwarf phenotype characterizes the smallest of rabbit breeds and is governed largely by the effects of a single dwarfing allele with an incompletely dominant effect on growth. Dwarf rabbits typically weigh under 1 kg and have altered craniofacial morphology. The dwarf allele is recessive lethal and dwarf homozygotes die within a few days of birth. The dwarf phenotype is expressed in heterozygous individuals and rabbits from dwarf breeds homozygous for the wild-type allele are normal, although smaller when compared to other breeds. Here, we show that the dwarf allele constitutes a ∼12.1 kb deletion overlapping the promoter region and first three exons of the HMGA2 gene leading to inactivation of this gene. HMGA2 has been frequently associated with variation in body size across species. Homozygotes for null alleles are viable in mice but not in rabbits and probably not in humans. RNA-sequencing analysis of rabbit embryos showed that very few genes (4-29 genes) were differentially expressed among the three HMGA2/dwarf genotypes, suggesting that dwarfism and inviability in rabbits are caused by modest changes in gene expression. Our results show that HMGA2 is critical for normal expression of IGF2BP2, which encodes an RNA-binding protein. Finally, we report a catalog of regions of elevated genetic differentiation between dwarf and normal-size rabbits, including LCORL-NCAPG, STC2, HOXD cluster, and IGF2BP2 Levels and patterns of genetic diversity at the LCORL-NCAPG locus further suggest that small size in dwarf breeds was enhanced by crosses with wild rabbits. Overall, our results imply that small size in dwarf rabbits results from a large effect, loss-of-function (LOF) mutation in HMGA2 combined with polygenic selection.


Assuntos
Nanismo/genética , Deleção de Genes , Proteína HMGA2/genética , Coelhos/genética , Animais , Éxons , Proteína HMGA2/metabolismo , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Coelhos/crescimento & desenvolvimento
17.
Elife ; 52016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27138043

RESUMO

Ecological adaptation is of major relevance to speciation and sustainable population management, but the underlying genetic factors are typically hard to study in natural populations due to genetic differentiation caused by natural selection being confounded with genetic drift in subdivided populations. Here, we use whole genome population sequencing of Atlantic and Baltic herring to reveal the underlying genetic architecture at an unprecedented detailed resolution for both adaptation to a new niche environment and timing of reproduction. We identify almost 500 independent loci associated with a recent niche expansion from marine (Atlantic Ocean) to brackish waters (Baltic Sea), and more than 100 independent loci showing genetic differentiation between spring- and autumn-spawning populations irrespective of geographic origin. Our results show that both coding and non-coding changes contribute to adaptation. Haplotype blocks, often spanning multiple genes and maintained by selection, are associated with genetic differentiation.


Assuntos
Adaptação Biológica , Peixes/genética , Variação Genética , Animais , Oceano Atlântico , Peixes/classificação , Peixes/fisiologia , Genética Populacional , Genômica , Águas Salinas , Água do Mar
18.
G3 (Bethesda) ; 6(7): 2213-23, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27207956

RESUMO

Skeletal atavism in Shetland ponies is a heritable disorder characterized by abnormal growth of the ulna and fibula that extend the carpal and tarsal joints, respectively. This causes abnormal skeletal structure and impaired movements, and affected foals are usually killed. In order to identify the causal mutation we subjected six confirmed Swedish cases and a DNA pool consisting of 21 control individuals to whole genome resequencing. We screened for polymorphisms where the cases and the control pool were fixed for opposite alleles and observed this signature for only 25 SNPs, most of which were scattered on genome assembly unassigned scaffolds. Read depth analysis at these loci revealed homozygosity or compound heterozygosity for two partially overlapping large deletions in the pseudoautosomal region (PAR) of chromosome X/Y in cases but not in the control pool. One of these deletions removes the entire coding region of the SHOX gene and both deletions remove parts of the CRLF2 gene located downstream of SHOX. The horse reference assembly of the PAR is highly fragmented, and in order to characterize this region we sequenced bacterial artificial chromosome (BAC) clones by single-molecule real-time (SMRT) sequencing technology. This considerably improved the assembly and enabled size estimations of the two deletions to 160-180 kb and 60-80 kb, respectively. Complete association between the presence of these deletions and disease status was verified in eight other affected horses. The result of the present study is consistent with previous studies in humans showing crucial importance of SHOX for normal skeletal development.


Assuntos
Osso e Ossos/metabolismo , Mapeamento Cromossômico , Genoma , Proteínas de Homeodomínio/genética , Cavalos/genética , Regiões Pseudoautossômicas/química , Deleção de Sequência , Animais , Sequência de Bases , Osso e Ossos/anormalidades , Feminino , Loci Gênicos , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/metabolismo , Homozigoto , Masculino , Regiões Pseudoautossômicas/metabolismo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo
19.
BMC Genomics ; 16: 851, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26497311

RESUMO

BACKGROUND: DNA cytosine methylation is an important epigenetic modification that has significant effects on a variety of biological processes in animals. Avian species hold a crucial position in evolutionary history. In this study, we used whole-genome bisulfite sequencing (MethylC-seq) to generate single base methylation profiles of lungs in two genetically distinct and highly inbred chicken lines (Fayoumi and Leghorn) that differ in genetic resistance to multiple pathogens, and we explored the potential regulatory role of DNA methylation associated with immune response differences between the two chicken lines. METHODS: The MethylC-seq was used to generate single base DNA methylation profiles of Fayoumi and Leghorn birds. In addition, transcriptome profiling using RNA-seq from the same chickens and tissues were obtained to interrogate how DNA methylation regulates gene transcription on a genome-wide scale. RESULTS: The general DNA methylation pattern across different regions of genes was conserved compared to other species except for hyper-methylation of repeat elements, which was not observed in chicken. The methylation level of miRNA and pseudogene promoters was high, which indicates that silencing of these genes may be partially due to promoter hyper-methylation. Interestingly, the promoter regions of more recently evolved genes tended to be more highly methylated, whereas the gene body regions of evolutionarily conserved genes were more highly methylated than those of more recently evolved genes. Immune-related GO (Gene Ontology) terms were significantly enriched from genes within the differentially methylated regions (DMR) between Fayoumi and Leghorn, which implicates DNA methylation as one of the regulatory mechanisms modulating immune response differences between these lines. CONCLUSIONS: This study establishes a single-base resolution DNA methylation profile of chicken lung and suggests a regulatory role of DNA methylation in controlling gene expression and maintaining genome transcription stability. Furthermore, profiling the DNA methylomes of two genetic lines that differ in disease resistance provides a unique opportunity to investigate the potential role of DNA methylation in host disease resistance. Our study provides a foundation for future studies on epigenetic modulation of host immune response to pathogens in chickens.


Assuntos
Galinhas/genética , Metilação de DNA , Epigênese Genética , Epigenômica , Transcriptoma , Animais , Composição de Bases , Biologia Computacional/métodos , Ilhas de CpG , Epigenômica/métodos , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma , Estudo de Associação Genômica Ampla/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pulmão/metabolismo , Anotação de Sequência Molecular , Regiões Promotoras Genéticas , Pseudogenes , Sequências Repetitivas de Ácido Nucleico
20.
PLoS Genet ; 10(8): e1004576, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25166907

RESUMO

Silky-feather has been selected and fixed in some breeds due to its unique appearance. This phenotype is caused by a single recessive gene (hookless, h). Here we map the silky-feather locus to chromosome 3 by linkage analysis and subsequently fine-map it to an 18.9 kb interval using the identical by descent (IBD) method. Further analysis reveals that a C to G transversion located upstream of the prenyl (decaprenyl) diphosphate synthase, subunit 2 (PDSS2) gene is causing silky-feather. All silky-feather birds are homozygous for the G allele. The silky-feather mutation significantly decreases the expression of PDSS2 during feather development in vivo. Consistent with the regulatory effect, the C to G transversion is shown to remarkably reduce PDSS2 promoter activity in vitro. We report a new example of feather structure variation associated with a spontaneous mutation and provide new insight into the PDSS2 function.


Assuntos
Alquil e Aril Transferases/genética , Galinhas/genética , Plumas/crescimento & desenvolvimento , Sequências Reguladoras de Ácido Nucleico , Animais , Cruzamento , Plumas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ligação Genética , Mutação , Fenótipo , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...